
A Predictive Mechanistic Model of Drug Release from Acetalated Dextran Particles Rebeca T. Stiepel¹, Erik S. Pena², Matthew D. Gallovic³, Christopher J. Genito⁴, Eric M. Bachelder¹, Kristy M. Ainslie^{1,2,4}

¹Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 ²Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA ³IMMvention Therapeutix, Durham, NC 27701 ⁴Division of Microbiology & Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599

Systemic administration drugs with

narrow therapeutic Introduction windows often results in inadequate dosing at the target site and/or negative off-target effects. Acetalated dextran (Ace-DEX) has been utilized as a microparticle (MP) drug delivery platform, allowing for triggered release in acidic environments, such as the endosome of phagocytic cells, tumor microenvironments, and sites of inflammation. Ace-DEX has tunable degradation rates based on cyclic acetal coverage (CAC). In this work, the effect of CAC on the release of various drugs from Ace-DEX MPs was evaluated in vitro. The goal of this work is to develop a predictive mathematical model based on a combination of diffusion and particle degradation. Initial results indicate accuracy of our model, even while varying polymer CAC, MP cargo, and environmental pH.

Background

Acetalated Dextran (Ace-DEX)

- Acid sensitivity allows for triggered drug release in the phagosome or tumor microenvironment
- Ace-DEX is **biocompatible** with pH-neutral degradation products. • Tunable degradation rate: Reaction time during synthesis (Fig. 1) determines the ratio of cyclic
- to acyclic acetal groups, where a higher CAC results in a slower degradation. • Degradation Mechanism: As a hydrophobic, non-reactive polymer, Ace-DEX is expected to
- degrade via surface erosion in aqueous buffers.

Methods

Experimental Methods

Particle Formation: 20, 40, and 60 CAC Ace-DEX MPs were made by emulsion (Fig. 2). Paclitaxel (PTX), Rapamycin (Rapa), and Dexamethasone (DXM) loading were determined by high performance liquid chromatography (HPLC). Doxorubicin (DXR) and Resiquimod (R-848) loading were determined by plate reader fluorescence (ex/em: 480/580 and 260/370 respectively).

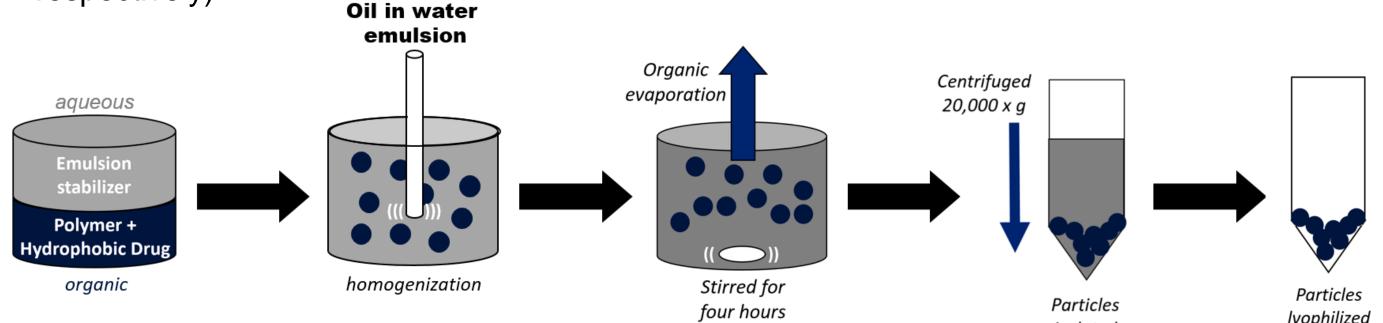


Figure 2: Schematic of particle formation via homogenization.

• Drug Release and MP Degradation: Drug release and MP degradation were evaluated in pH 5 and 7.4 buffer under sink conditions at 37°C. Drug release was determined via HPLC for PTX and Rapa and by fluorescence reading for DXR and R-848. Blank particle degradation was evaluated with a bicinchoninic acid (BCA) assay and imaged via scanning electron microscopy (SEM).

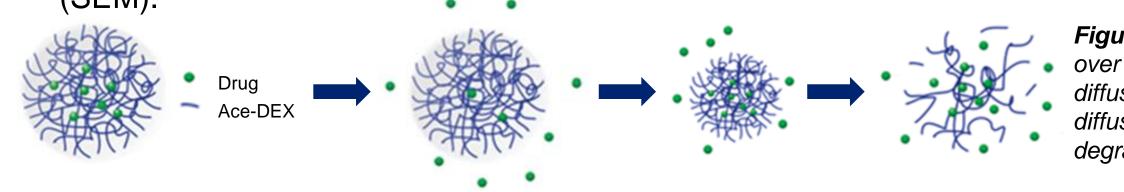


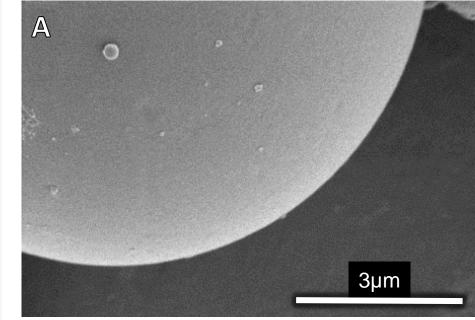
Figure 1: Water-soluble dextran reacts with 2-ethoxypropene to Ace-DEX, an acid sensitive polymer that is soluble in organic solvents. More cyclic acetal groups form as the reaction time increases. These groups are more thermodynamically stable making higher CAC Ace-DEX polymers more stable in aqueous environments.

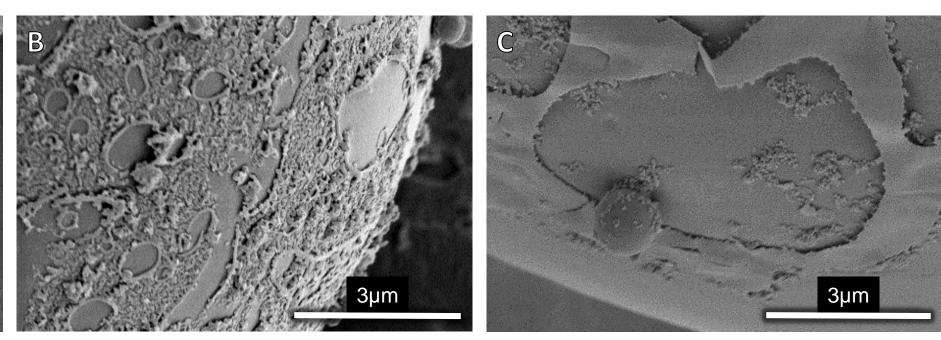
3: Release mechanism time involving simple ffusion, degradation mediated diffusion, and final particle

Methods (continued)

Development of the Diffusion-Erosion Model

• Constitutive equations were developed based on the predicted release mechanism (Fig. 3)


1)
$$\frac{M_t}{M_{A0}} = \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-\frac{1}{n^2} \exp\left(-\frac{1}{n^2}\right) + \frac{1}{n^2} \exp\left(-\frac{1}{n^2}\right) + \frac{1}{n^2} \exp\left(-\frac{1}{n^2} \exp\left(-\frac{1}{n^2}\right) + \frac{1}{n^2} \exp\left(-$$


$$(2) \quad \frac{dR}{dt} = -k_{deg} * R$$

- M_t =mass of drug remaining in MPs at time t, M_{A0} =initial mass of loaded drug, R=total MP radius, D_{AB} =diffusion coefficient, k_{ded} =polymer degradation coefficient.
- Equation 1 was developed from the continuity equation and Fick's Law at unsteady state to represent drug diffusion away from the MP.
- Equation 2 represents the surface erosion of Ace-DEX MPs and follows first order degradation. Model simulations were done in MATLAB, and outputs were evaluated against drug release. D_{AB} was estimated by nonlinear fit of release curve data with weighted least squares for PTX, Rapa,
- DXR, and R-848 release, while all other parameters were determined empirically. • Machine learning was employed to predict D_{AB} for DXM release. A neural network (NN) was developed to estimate D_{AB} from drug properties (polar surface area, logP, molecular weight), MP properties (polymer CAC, drug loading), and buffer pH.

Particle Degradation

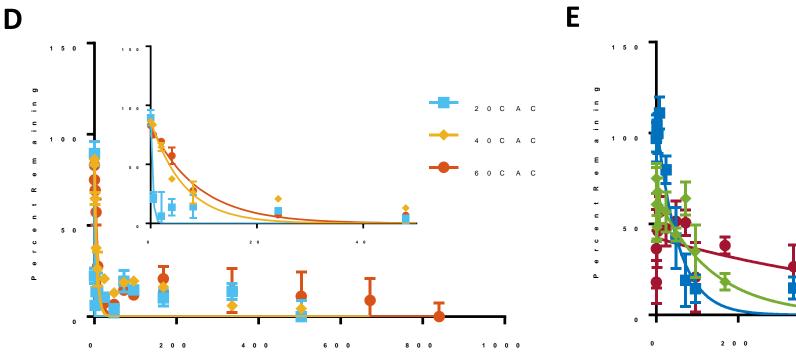
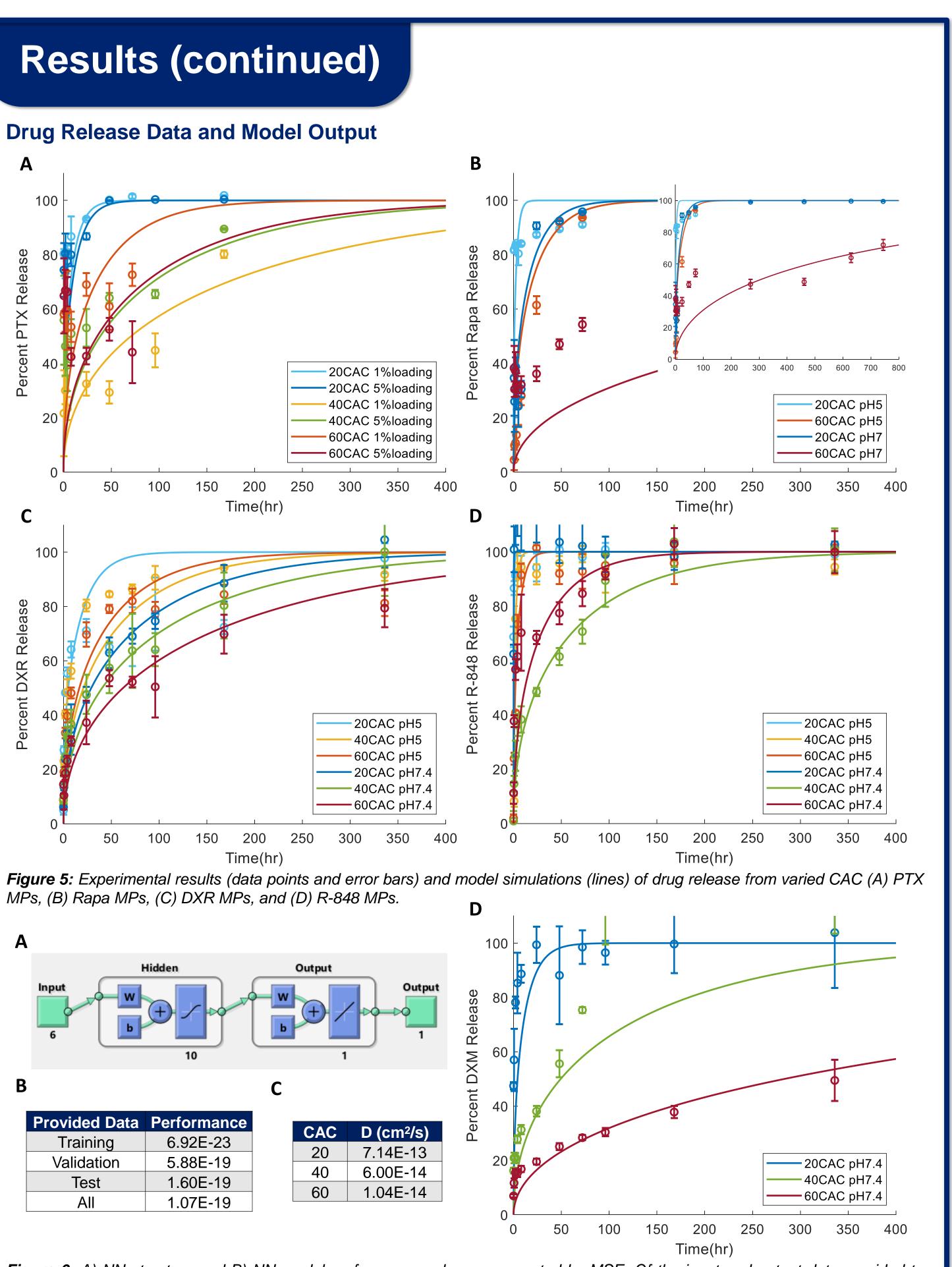


Figure 4: Visualization of MP degradation and measurement of blank MP degradation rates at varied CAC levels. Representative SEM field of (A) 40 CAC MP surface at t=0 prior to pH 7.4 incubation, (B) MP surface at t=0.5h, and (C) MP surface at t=168h. Comparison of A, B, and C indicates surface erosion behavior over time. BCA assay results (data points) and nonlinear fit of one phase decay (lines) of 20, 40, and 60 CAC MPs in (D) pH 5 and (E) pH 7.4 buffer at sink conditions and 37°C demonstrate MP degradation kinetics. (F) Blank MP half lives determined via nonlinear fit of the one phase decay model.


Drug-Loaded Particle Formulation and Diffusion Coefficient Estimates

Drug	Radius (µm)	Theoretical Loading	CAC	Encapsulation Efficiency	Loading (µg/mg)	D _{AB} (cm²/s) pH 5	D _{AB} (cm²/s) pH 7-7.4
			20	94.0 ± 2.3%	9.40 ± 0.23	Not estimated	4.89E-13
ΡΤΧ	1.34 ± 1.31	1%	40	86.7 ± 2.4%	8.67 ± 0.24		2.13E-14
			60	87.8 ± 2.7%	8.78 ± 0.27		1.06E-13
		5%	20	85.2 ± 2.7%	42.58 ± 1.36	not estimated	3.84E-13
			40	85.4 ± 2.8%	42.72 ± 1.39		3.86E-14
			60	87.3 ± 4.3%	43.67 ± 2.14		4.29E-14
Dana	0.28 ± 0.20	1%	20	113.0 ± 6.7%	11.30 ± 0.67	6.74E-14	1.02E-14
Rapa			60	112.0 ± 8.0%	11.20 ± 0.80	7.93E-15	2.12E-16
R-848	0.17 ± 0.08	1%	20	8.5 ± 0.6%	0.85 ± 0.06	1.54E-13	6.09E-13
			40	9.6 ± 1.5%	0.96 ± 0.15	3.32E-14	9.95E-16
			60	9.3 ± 0.2%	0.93 ± 0.02	1.33E-14	2.08E-15
			20	22.7 ± 0.8%	2.27 ± 0.08	4.79E-15	9.31E-16
DXR	0.18 ± 0.09	1%	40	26.3 ± 0.1%	2.63 ± 0.01	1.28E-15	6.66E-16
			60	24.7 ± 3.5%	2.47 ± 0.35	1.62E-15	4.34E-16
	0.19 ± 0.08	1%	20	19.23 ± 4.97%	1.92 ± 0.49		Predicted separately via machine learning
DXM			40	14.56 ± 5.05%	1.46 ± 0.50	Not estimated	
			60	20.52 ± 3.14%	2.05 ± 0.31		

Table 1: A summary of Ace-DEX MP formulations. CAC is determined by nuclear magnetic resonance (NMR). Encapsulation efficiency is determined via HPLC for PTX, Rapa, and DXM and via fluorescence reading for DXR and R-848. Diffusion coefficients are estimated through the diffusion-erosion model via nonlinear fit of release curve data with weighted least squares.

$$\left(\frac{D_{AB}n^2\pi^2t}{R^2}\right)$$

•	Blank MP Half Life (hr)			
2 0 C A C		pH 5	pH 7.4	
4 0 C A C 6 0 C A C	20 CAC	0.253	36.6	
	40 CAC	4.38	91.6	
	60 CAC	6.14	439	
400 600 800 1000				

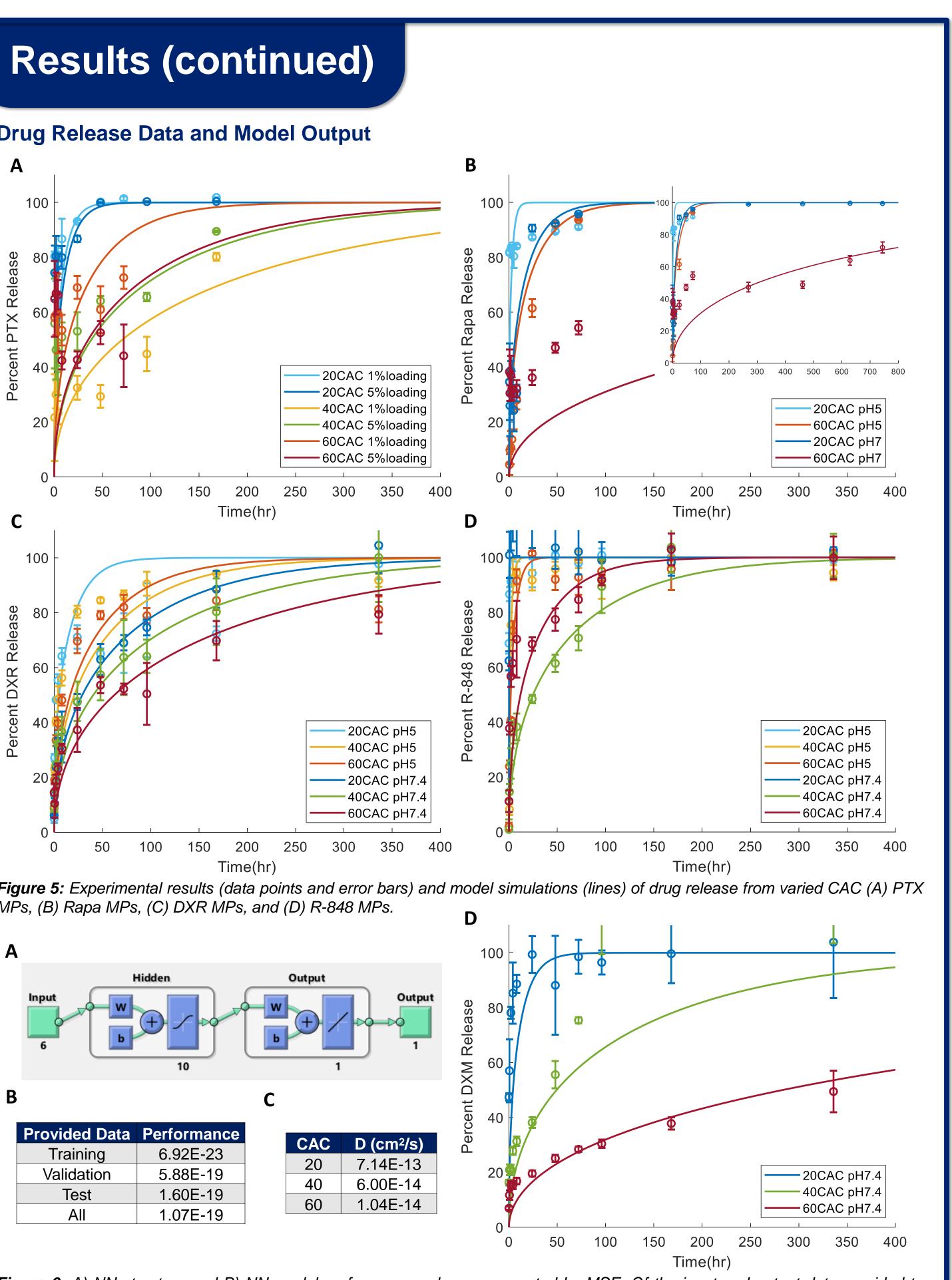


Figure 6: A) NN structure and B) NN model performance values represented by MSE. Of the input and output data provided to develop the NN, 70% was randomly assigned as training data, 15% as validation data, and 15% as test data. C) NN predicted D_{AB} parameter values per CAC of DXM MPs at pH 7.4. D) DXM release experimental results (data points and error bars) and model simulations (lines) with NN predicted D_{AB} parameter values.

Conclusions

- **DEX formulations.**

Future Work

- *In vivo* experiments are planned with varied CAC MPs.

Acknowledgements

The Ainslie Lab, CHANL, UNC SOLAR Program, Ford Foundation Pre-Doctoral Fellowship

References

- A Quantitative Treatment. Biomacromolecules, 2005, 6 (4), pp 2312-2319. DOI: 10.1021/bm050228k

JNC SCHOOL OF PHARMACY

• Ace-DEX MPs appear to degrade via surface erosion with a rate dependent on CAC and pH. • Each drug demonstrated distinct release kinetics, likely influenced by varied drug properties. • Our model was successful in fitting drug release behavior for various Ace-DEX MP systems. • With training data from model fitting, a neural network machine learning algorithm was able to accurately predict diffusion coefficients for additional release curves with DXM. • With further work, this model can aid in the optimization of drug delivery kinetics of Ace-

• Applications of the model are planned with additional cargos and geometries.

Bachelder EM. Ainslie KM. Synthesis and Characterization of Acetalated Dextran Polymer and Microparticles with Ethanol as a Degradation Product. ACS Appl. Mater. Interfaces, 2012, 4 (8), pp 4149–4155. DOI: Siepmann J, Elkharraz K, Siepmann F, Klose D. How Autocatalysis Accelerates Drug Release from PLGA-Based Microparticle

