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• American Cancer Society estimates 149,500 new cases of colorectal

cancer (CRC) along with 52,980 CRC related deaths in 2021, ranking

4th and 2nd respectively1.

In this work, we present a dual delivery platform for more effective

immunotherapeutic treatments by combining intelligent pH responsive

biomaterials for DC activation with targeted immune checkpoint blockade

treatment to achieve a synergistic effect between multiple immune

response phases.
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• Successfully synthesized and characterized cationic nanoscale hydrogels

with varied composition to improve relevant characteristics.

• Fine tunable critical swelling pH to reach relevant endosomal conditions.

• Further in vitro and in vivo studies will be required to confirm therapeutic

efficacy of the dual delivery platform to synergistically stimulate an

antitumor immune response for complete tumor eradication.

Nanogel Synthesis

(2) Effector Phase
• Tumor-targeted nanogel

• Enhance T cell response by 

sensitizing

(1) Priming Phase
• DC-targeted nanogel

• Activate DCs and recruit T cells

Approach:  Develop a dual nanoparticle system to achieve a 

synergistic effect at the priming and effector phases
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Immunotherapy Advantages

• Generic cancer treatment

• Multiple target pathways

• High specificity, Few side effects

• Immunologic memory

Immunotherapy Disadvantages

• Tumor microenvironment 

immunosuppression2

• Complex system of signaling 

pathways

• Potential autoimmune side effects
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• Recent growing trend investigating combination treatments that work

in synergy to produce a more robust therapeutic response, while

reducing dosage and toxicity levels3.

Nanogel Core Design

1.Cationic Monomers

Surface Grafts

3. Hydrophilic Stealth Agent

Bis(2-methacryloyl)oxyethyl disulfide 

(Disulfide XL)

2-(diethylamino)ethyl 

methacrylate (DEAEMA)

Cyclohexyl methacrylate (CHMA)

Poly(ethylene glycol) methyl 

ether methacrylate (PEGMA)

4. Crosslinking Agent
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2-(diidopropylamino)ethyl 

methacrylate (DPAEMA)

2.Hydrophobic Monomer

0 mol% CHMA 21.2 mol% CHMA 30 mol% CHMA

A 3.520 2.627 2.130

B 6.042 3.509 6.031

C 7.527 6.816 6.805

D 1.000 1.000 1.000

VSR=
𝐴−𝐷

1+exp(𝐵∗ 𝑝𝐻−𝐶 )
+ 𝐷

A – Maximum Volume Swelling Ratio (VSR)

B – Slope of the Swelling Transition

C – Critical Swelling pH

D – Minimum Volume Swelling Ratio
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CHMA Swelling Comparison
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DEAEMA/DPAEMA Swelling Comparison
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A 3.236 2.797 2.557 2.943

B 6.100 4.916 4.930 4.156

C 6.518 6.579 6.754 6.732

D 1.000 1.000 1.000 1.000

Figure 2. (A) Volume swelling curves

for nanogels with varying amounts of

hydrophobic monomer, CHMA.

Samples were measured at 0.5

mg/mL in 1X PBS at 25°C. Best fit

curve was determined based on

Equation 1 using the variables in

Table 1. Data represents mean ±

SEM (n=3).

Table 1. Best Fit Swelling Curve Variables

Table 2. Best Fit Swelling Curve Variables

Figure 3. (A) Volume swelling curves

for nanogels with varying mol ratios

of cationic monomers, DEAEMA and

DPAEMA. Samples were measured

at 0.5 mg/mL in 1X PBS at 25°C.

Best fit curve was determined based

on Equation 1 using the variables in

Table 2. Data represents mean ±

SEM (n=3).

Figure 1. (A) Dynamic Light Scattering (DLS) hydrodynamic diameter swelling curve and

polydispersity index for nanogel formulation. Samples were measured at 0.5 mg/mL in 1X

PBS at 25°C. Data represents mean ± SEM (n=3).

Equation 1. Best Fit Curve for pH Swelling

Critical swelling pH shifts from

physiological environment pH (red

region in Figure 2A) to tumor

extracellular and intracellular

environment pH (green region in

Figure 2A) as highlighted in Table 1.

Critical swelling pH shifts further into

the relevant pH range of the tumor

microenvironment and the early

endosome (pH ≈ 6.5), while

maintaining stability and VSR as

highlighted in Table 2.


