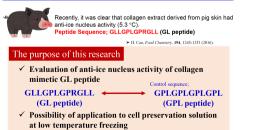
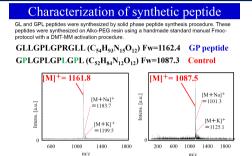
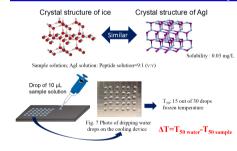
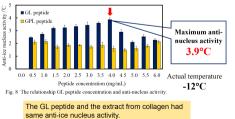

Anti-ice nucleation peptide applied for cell stock solution

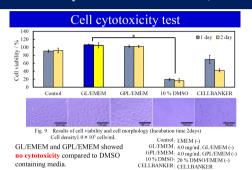

Yoshiaki Hirano^{1,2}, Kaya Ichikawa¹

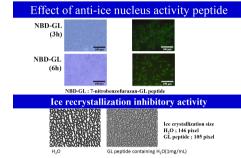

¹Faculty of Chemistry, Materials and Bioengineering, Kansai University, ² Kansai University Medical Polymer Research Center, Kansai University, Suita, Osaka 564-8680, Japan

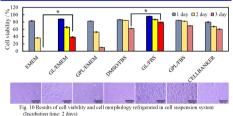


Introduction






Measurement of anti-ice nucleus activity


Measurement of anti-ice nucleus activity

Refrigerated storage test (L929)(cell suspension)

· The addition of GL peptide significantly improved cell viability. · L929 refrigerated with the addition of GL peptide maintained its proliferative capacity.

Refrigerated storage test (hMSC)(cell suspension) ■1 day ■2 day DMEM GL/DMEM DMSO/FBS GL/FBS CELLBANKER -

- Fig. 11 Results of cell viability and cell morphology refrigerated in cell suspension system (Incubation time: 2 days)
- · The addition of GL peptide significantly improved cell viability. · hMSC refrigerated with the addition of GL peptide maintained
- its proliferative capacity.

Conclusions

- ✓ The synthetic GL peptide showed the maximum anti-ice nucleus activity of -3.9 °C at 4.0 mg / mL.
- ✓ GL peptide and GPL peptide showed no cytotoxicity.
- ✓ In the refrigerated storage test of L929 & hMSC cell. the addition of GL peptide significantly improved the cell viability.
- ✓ It was suggested that GL peptide may be used as a cryoprotectant for cell culture medium at low temperature.

