

Dual Stimuli-responsive Sol-Gel Transition Polymers with Photodimerizable Groups for Regulating Cell Behavior Takashi Miyata, Masaaki Okihara, Akana Matsuda, Yosuke Natsume, Akifumi Kawamura Department of Chemistry and Materials Engineering, Kansai University (tmiyata@kansai-u.ac.jp)

1. Introduction

Stimuli-responsive polymers that exhibit sol-gel phase transition in response to environmental changes such as temperature and pH have attracted considerable attention as injectable polymers and scaffolds for cell culture. Although numerous stimuli-responsive polymers that undergo a sol-gel transition have been reported, the literature contains few accounts of biomolecularly stimuli-responsive polymers that undergo a sol-gel transition in response to a specific biomolecule. We have designed a variety of stimuli-responsive gels that undergo the volume changes in response to a target molecule (Miyata, T. et. al. PNAS 2006, 103, 1190; Miyata, T. et. al. Chem. Commun. 2014, 55, 11101). In addition, biotin-conjugated four-armed poly(ethylene glycol) (PEG) that transformed from a sol to a gel state in response to avidin was synthesized as a molecularly stimuli-responsive sol-gel transition polymer (Miyata, T. et. al. Polym. Chem. 2017, 8, 6378). Our strategy for designing such molecularly stimuli-responsive polymers and gels uses biomolecular complexes as dynamic crosslinks. In this study, as dual stimuli-responsive sol-gel transition polymers for cell culture, we designed two kinds of PEG derivatives with functional groups for forming dynamic crosslinks, *i.e.* photo/molecule- and photo/temperature-responsive sol-gel transition polymers. Cells were cultured within the photo/molecule-responsive PEG derivatives with sol and gel states. Cell behavior was investigated on photo/temperature-responsive gels with different elastic modulus and hydrophilicities.

2. Background

Miyata, T. Polym. Chem. 2017, 8, 6378.

Effect of physical properties of scaffolds on cell behavior

3. In this study

Photo/molecule-responsive polymers

Photo/temperature-responsive polymers

4. Cell culture in BMP-Avidin complex gel

Fig. 1. (a) Phase contrast image of the L929 cells cultured within BMP-Avidin gel for 2 days. (b) Phase contrast and fluorescence image of the L929 cells cultured for a week after the gel changed to a sol state by the addition of free biotin. L929 cells were stained by calcein. (c) Number of L929 cells cultured without () and with () BMP-Avidin gel.

(254 nm)

5. Properties of P(MAC-co-OEGMA)

Photo/Temperature-responsive behavior (C) 10⁴ (a) Before UV irrad. Sol (%)

Fig. 2. Photographs of P(MAC₂₀-co-OEGMA₈₀) before (a) and after (b) UV (250-400 nm) irradiation for 1 h. The concentration of $P(MAC_{20}-co-OEGMA_{80})$ was 23 wt% in water. (c) Effect of the UV irradiation (300-400 nm) time on the storage elastic modulus (G': \bigcirc) and loss elastic modulus (G'': \bigcirc) of the resulting P(MAC₂₀-co-OEGMA₈₀) gels. The polymer concentration of was 33 wt% in water. (d) Changes in transmittance (650 nm) of $P(MAC_{20}-co-OEGMA_{80})$ hydrogel formed by UV (300-400 nm) irradiation for 60 min as a function temperature.

6. Cell culture on P(MAC-co-OEGMA) gels >Cell culture on hydrogels with different elastic modulus (a) UV irrad. time = 30 min (b) UV irrad. time = 60 min (c) Adhesion of cells onto a patterned surface

Fig. 3. Adhesion of L929 cells onto a surface of P(MAC₂₀-co-OEGMA₈₀) hydrogels formed by UV (300-400 nm) irradiation for 30 min (a) and 60 min (b). Cells were cultured on the hydrogel surfaces for 3 days and stained by calcein. (c) Adhesion of L929 cells onto a patterned surface of P(MAC₂₀-co-OEGMA₈₀) hydrogel exposed to UV (300-400 nm) for 120 min through a large square mesh (pitch = 250 mm, hole = 200 mm, and bar = 50 mm).

Cell culture on hydrogels at different temperatures T=30 °C (<LCST) Gel T=37 °C (>LCST) Gel Hydrophilic ig ratio: 0 % °100 μn **Hydrophobic**

Fig. 4. Adhesion of L929 cells on a P(MAC₂₀-co-OEGMA₈₀) hydrogel, which was formed by UV (300-400 nm) irradiation for 180 min, at 30 and 37°C. Cells were cultured on the hydrogel surfaces for 1 day.

7. Conclusion

10

Sol

- > Cell behavior within the BMP-avidin complex hydrogel was quite different from that after the dissociation of the hydrogel by the addition of free biotin.
- > Cell behavior on P(MAC-co-OEGMA) hydrogels was strongly influenced by their surface modulus and hydrophilicity.

