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Clinical Motivation

• Chronic Obstructive Pulmonary Disease (COPD) - progressive lung

disease associated with airflow obstruction and decreased gas exchange.

• Affects 16.4 million U.S. patients + kills 156,000/year1

• Causes >1 million hospitalizations annually.2

• < 2,700 lung transplants annually due organ shortages3 and other

therapies fail in terms of gas exchange efficacy and/or duration of use
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Alternative Therapies- Inadequate / Unavailable
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In contrast, in vivo, blood 

contacts endothelial cells 

which passively and 

actively inhibit 

coagulation.11,12 

Surface-induced clot on plastic oxygenators

MAQUET QUADROX

blood flow
(Modified from 

Transonic, 2018)9

Device failure

poor O2 transfer

1-4 weeks6-9

CLOT 

ACCUMULATION

(Modifed from 

Transonic, 2018)9

Fig. 1:

Fig. 3:

Fig. 2:

Step 1: Engineer 

the 2D membrane

Hypotheses:

• A biomimetic oxygenator with a fully biological gas exchange membrane

that interfaces endothelial cells with blood will provide longer-lasting

support than current devices.

• The membrane will likely require epithelial cells to minimize blood

component efflux into the air space.
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Results and Conclusions

• 2D scaffold was fabricated + measured to be 18.8 ± 4 µm.

• Acellular COLL I membranes minimize water movement 

from plasma to the air-side to 7.75 µL/cm2/mmHg/hour

• Cocultured tissues (42.1 ± 7 µm) are nutrient supported in 

air-liquid culture with cell fractions >85% viable.

• Cellularization significantly decreased permeability of an 

albumin mimic (70 kDa-FITC Dextran) and cocultures were 

the least permeable (ex: 14-day coculture: 2.11 E-4 cm/hr).

• Dextran permeability did not change between 7 & 14 days.

• The 2D interface was formed as a COLL I channel, 

analogous to those in the full-scale device design.

• Channels are cellularizable and perfusable while 

suspended in air.

Future Work
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• Channels will be cellularized and perfused.

• Channels will then be used to quantify gas exchange and 

compatibility with blood.

• Results will inform whether the fully biological interface has 

potential for use as the membrane of a biomimetic 

oxygenator.

• We will then switch to primary cell types and scale up 

surface area with a multi-channel device.
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Biofabrication Methods and Characterization Results

2D Scaffold Fabrication and Acellular CharacterizationFig. 4:

Fig. 5: A. Cell seeding set-up. B. Cell-type

specific viability comparisons (Welch's t-tests)

for live-dead imaged tissues (see C.),

cultured in an air-liquid vs liquid-liquid

environment. HUVECs contact HUVEC

media (all 7 days), while A549s switch to air

on day 3 for the last 4 days or remain in

media.
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Cellularization & Live-Dead of Air Liquid Culture Fig. 5:

Permeability to Blood ProteinFig. 6:

C. Transwell Incorp.

ii. Post H2O 

soak + air dry

Scale bar: 20 µm

Multi-photon image 

D. Fluid Permeability A. Collagen I gel fabrication
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Perfusable Collagen I ChannelsFig. 7:

C. Perfusability

blood 
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Fig 4: A. (i) Pre- and (ii) post- dehydration COLL I gels imaged with (iii) OCT or multi-photon (MP)  

microscopy (iv). B. MP image quantification of thickness vs casting solution concentration. C. COLL 

I membrane in commercial Transwell. D. Fluid permeability across acellular membranes (n=7).
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B.  Air-Liquid Coculture, Day 7

Nuclei ZO-1 E-CadNuclei

C.  70 kDa FITC-Dextran Permeability

i. Hydrated gel 

(3.77 mg/mL)

B. Coculture Cell ViabilityA.

A549: lung 

epithelial cells

HUVEC: human 

umbilical vein 

endothelial cells

Cell Seeding (area: 0.9 cm2)

Bovine 

plasma (37°C)

A. Cast COLL I solution around wax 

and ports: 

Rehydrated walls: 16.8 ± 3.4 µm

20 mm

10 mm
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B. Rehydrated, acellular channel
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Fig 7: A. Methods schematic for 70 kDa-

FITC Dextran, an albumin mimic, tissue

permeability. XZ cross-section shown for

part B images. B. Confocal images (25x) of

stained Zonula Occluden-1 (i, iii) and

Vascular Endothelial (ii) or Epithelial

Cadherin (iv) for 7-day cocultured cell layers

C. Permeability for 7- or 14-day groups

(n=6-8) with Brown-Forsythe ANOVA test.
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HUVEC (top) A549 (bottom)C.  Live-Dead:

A. Use of 70 kDa FITC 

dextran = an albumin mimic:

Sink, air side, sampled at 3 hours

Dextran - 20 mg/mL, media side

Suspended in air

Fig 7: A. Flexible mold casting, biomaterial processing, & result post wax dissolution (B). C. Perfusion demonstration while suspended in air.


