Small Extracellular Vesicles (sEV) from Precision Porous Templated Scaffold **Resident Cells Modulate T Cell Inflammatory Signaling via TLR4** Thomas Hady BS¹, Billanna Hwang MPH DHSc², James D. Bryers PhD¹

University of Washington Department of Bioengineering¹, University of Washington Department of Surgery²

1. Background

4. Results

with monomer

↑ Fig. 1 Porous templated scaffold (PTS) construction

- PTS with 40µm diameter pores induce pro-healing effects
- PTS-derived sEVs stimulate T cells and adjust T_{req} and TH1 populations
- Working to quantify the mechanism of sEV-to-T cell signaling

2. Objective

↑ Fig. 2 Study Objective: We seek to quantify the mechanism of small extracellular vesicle (sEV) signaling that affects the phenotype of CD4⁺ T cells within the PTS.

3. Methods

Fig. 3. Proteomic analysis of PTS resident cell-derived sEVs.

Primary Splenic T cells: WT, MyD88ko, TLR4ko

1e-3 STAT3α

IFNα

TRAF3

1e-1

1e-4

MyD88 Knockout

1e-3

1e-3

1e-2

STAT3β

IFNβ

TRAF6

TLR4 Knockout

1e-3

1e-3

1e-1

IFNβ

STAT3α

IFNα

TRAF3

1e-3

1e-2

1e-4

↑ Fig. 4. qPCR to assess TLR4 effector signaling of splenic T cells from WT, TLR4ko, and MyD88ko mice treated with PTS-derived sEVs Project supported by NIH grant 5 R01 GM 128991-03 Figures 2 - 5 created with BioRender[™] Software.

5. Conclusions

Wild Type

9

1e-4

1e-3

STAT3α

IFNα

TRAF3

1e-4

1e-2

1e-4

t)

Ń

STAT3β

IFNβ

1e-3 TRAF6

- The proteomic content of sEVs from 40µm and 100µm PTS are similar but possess key immunomodulatory differences
- MyD88-dependent TLR4 activation induces anti-inflammatory sEV-to-T cell signaling, particularly from 40µm PTS sEVs
- MyD88-independent TLR4 activation regulates activation of other pathways (e.g. TCR, TLR2) by PTS sEVs

Poster by Thomas Hady PhD Candidate Bryers & Mulligan/Hwang Laboratories tfh3gf@uw.edu