HARLEYLAB

Mineralized Collagen Scaffold Pore Structure Enhances Immunomodulatory Potential of Mesenchymal Stem Cells Vasiliki Kolliopoulos¹, Brendan A.C. Harley^{1,2}

¹ Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, ² Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

hMSC gene expression influenced by priming in a scaffold dependent manner Iso N Ani N Osteogenic ()14 7 21 Immunomodulatory 14 7 21 Angiogenic 14 21 Figure 3: Select osteogenic, immunomodulatory, and angiogenic gene expression measured via NanoString (n=1) of basal and primed hMSCs seeded on isotropic, anisotropic, or heparin containing scaffolds. hMSCs V. Kolliopoulos, M. Polanek, Influences of scaffold structure and composition on hMSC immunomodulatory potential. (in preparation)

Future Work

Our goal is to design a biomaterial that can promote hMSC osteogenesis while temporally modulating the inflammatory environment. **Therefore, future experiments** will elucidate the crosstalk interactions of hMSCs and immune cells like macrophages and how these interactions can be modulated via biomaterial influences.

CARL R. WOESE

INSTITUTE FOR

GENOMIC BIOLOGY

JLLINOIS

