Antimicrobial Hernia Mesh:

Ziyu Wang^{1*}, Ahmed El-Shafei¹, Ashley C. Brown², Jessica M. Gluck¹, Martin W. King^{1,3}

¹ Wilson College of Textiles, North Carolina State University, Raleigh, NC

² Joint Dept of Biomedical Engineering, UNC-Chapel Hill & NC State University, Raleigh, NC

³College of Textiles, Donghua University, Songjiang, Shanghai, China

Plasma Activated Diallyldimethylammonium Chloride Coating

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Background

NC STATE

Wilson College of Textiles

Textile Engineering, Chemistry

and Science

More than 20,000 US hernia cases each year.

- Frequency of hernia mesh complications:
 - \blacktriangleright Inguinal repair ranges from 2.3% to 20%.
 - \succ Femoral hernias range from 11.8% to 75%.
- Other hernia complications:
 - Seroma, persistent pain, tissue adhesions, and wound infection.
- Infection is the third major complication after hernia mesh implantation [1].

Approach

recurrence.

Plasma induced antibacterial hernia mesh to prevent bacterial infection.

- Radio frequency plasma activates mesh surface with diallyldimethylammonium chloride (DADMAC) and pentaerythritol tetraacrylate (PETA) crosslinker [2].
- Prevents late bacterial infection.
- Inexpensive and easy method to apply.
- Tension-free mesh helps recovery and reduces

CA left: 119.7°

Images source: https://www.nhbr.com/hernia-mesh-litigation-mounts/

Conclusions and Future Work

- Successfully activated both sides of the polypropylene mesh surface by using He/O₂ radio frequency plasma.
- Successfully grafted uniform coating of DADMAC on both sides of the polypropylene mesh.
- Nitrogen positive ions were detected on the DADMAC treated mesh surface by acid dye and TOF-SIMS to confirm the presence of DADMAC coating.
- The bacteriostatic rate for DADMAC treated mesh was calculated for both E. coli (at 86.8%) and for S. aureus (at 99.9%). The DADMAC treated samples indicated significant reduction in bacteria load compared to the untreated control sample.
- In the future, optimize power level and time for the atmospheric pressure radio frequency plasma system to improve the durability of DADMAC coating.
- In vitro assays to evaluate cell attachment and mesh biocompatibility will be undertaken.
- In vivo animal trials will demonstrate clinical relevance.

References

[1] M. Deysine, "Pathophysiology, prevention, and management of prosthetic infections in hernia surgery," The Surgical Clinics of North America, vol. 78, no. 6, pp. 1105–1115, viii, Dec. 1998.

[2] M. Mazloumpour, P. Malshe, A. El-Shafei, P. Hauser, "Conferring durable antimicrobial properties on nonwoven polypropylene via plasmaassisted graft polymerization of DADMAC," Surface and Coatings Technology, vol. 224, pp. 1–7, 2013, doi: 10.1016/j.surfcoat.2013.02.022.

Contact Info

Ziyu Wang: <u>zwang77@ncsu.edu</u> LinkedIn: Ziyu Wang