Proliferation, Differentiation and Calcification of MC3T3-E1 Cells on Zr-14Nb-5Ta-1Mo Alloy OPeng Chen¹, Hiromitsu Sato², Maki Ashida¹, Yusuke Tsutsumi³, Hiroyuki Harada², Takao Hanawa^{1,4}

¹ Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University ² Oral and Maxillofacial Surgery, Graduate School, Tokyo Medical and Dental University. ³ Research Center for Structural Materials, National Institute for Materials Science ⁴ Center for Advanced Medical Engineering Research & Development, Kobe University

Research Background & Our Purposes

Potential problem (1) during visual inspection

Artifact with increasing magnetic field and magnetic susceptibility of dental implant

Metallic biomaterial with low magnetic susceptibility is necessary.

現場で役立つ臨床MRIシリーズ1MRIの原理と撮像泳

Results & Discussion

1. Adhesion visualization

Potential problem (2) during clinical treatment

Re-fracture due to stress shielding

Reference:ストレスシールディングによる再骨折の例 through http://ivrm.jp/kvh/cap/cap3/02.html

Table. The mechanical properties of the new Zr alloy we developed previously.

Composition	Young's modulus, <i>E</i> / GPa	Ultimate tensile strength, <i>o</i> uts / MPa	0.2% proof strength, <i>o</i> _{0.2%} / MPa	Elongation to fracture, ε/%	Vickers hardness, HV	Mass magnetic susceptibility, _{Xg} / 10 ⁻⁹ m ³ •kg ⁻¹
As-forged Zr-14Nb-5Ta-1Mo alloy	64±1	651±13	632±13	17±7	213±8	17.5±0.4
As-cast Zr-14Nb-5Ta-1Mo alloy	53 ± 1	796 ± 64	754 ± 57	15±4	208±1	17.3±0.2
Zr-14Nb (as cast)	70	784	686	12	275	17.0
Zr-1Mo (as cast)	98	970	855	3		14.2
Ti-6AI-4V ELI	100	980	920	14	320	39.8
Ti-6Al-7Nb	114	933	817	7	325	35.3
Co-Cr-Mo	200	980	680	11	370	94.5

Purpose: To study the potential usage of new designed Zr-14Nb-5Ta-1Mo (ZNTM) alloy with medical and dental applications, we investigated the responses of mouse osteoblastic cells (MC3T3-E1) to this ZNTM alloy.

6 h 24 h

Ti

Zr-14Nb-5Ta-1Mo Alloy

2. Proliferation evaluation

Fig. Osteogenic differentiation in MC3T3-E1 cultured **Fig.** Proliferation of MC3T3-E1 cultured on Zr-14Nb-5Ta-1Mo alloy and Ti specimens. The numbers of attached on Zr-14Nb-5Ta-1Mo alloy and Ti specimens through cells were counted by WST-8. The "n.s." represents non- ALP activity levels detected after incubation of 6-d, 8d, 10-d, 12-d, and 14-d differentiation induction. significance.

Fig. Initial adhesion of MC3T3-E1 cells attached on Zr-14Nb-5Ta-1Mo alloy and Ti specimens after 3-h, 6-h, and 24-h incubations with fluorescent staining. (a) Fluorescent photos of cellular morphologies on specimens, where nuclei and F-actin were visualized with blue and red, respectively. Scale bar: 200µm.

3. Osteogenic differentiation detection

Materials & Methods

1. Preparation of ZNTM alloy specimens

4. Calcification evaluation

2. Cell culture

+ 10% Fetal Bovine Serum (FBS) Medium + 100 U mL-1 Penicillin + 100 mg mL-1 Streptomycin Differentiation Proliferation Medium + 50 mg mL⁻¹ L-ascorbic acid Induction + 2 mM β -glycerophosphate **Medium**

The induction medium was replaced every three days.

Fig. Opical photo of MC3T3-E1 cell

3. *in vitro* evaluation

Adhesion visualization: Fluorescent staining **Proliferation evaluation:** Cell Counting Kit-8 Osteogenic differentiation detection: Alkaline phosphatase (ALP) activity analysis **Calcification evaluation:** Alizarin red s staining and quantitative analysis

Conclusions

In this study, cytocompatibility and osteoconductivity of developed ZNTM were investigated. A similar good biocompatibility of ZNTM and Ti was obtained based on cellular adhesion and proliferation results. For cellular osteogenic differentiation and calcification, an insufficient osteoconductivity of ZNTM was obtained comparing with Ti. This work is expected to promote the MRI-compatible ZNTM to be used for medical applications, in particular, fabrication of bone fixation devices.

Acknowledgment

This work was supported by the JSPS, KAKEN, Grant Number: 15H03018 and 19H04464 and by The Creation of Life Innovation Materials for Interdisciplinary and International Researcher Development (iLIM) Project and Viable Materials Project, Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.