Adsorption behavior of serum proteins on the surface of Hydroxyapatite ceramics with preferred orientation to *a*-plane

Erika Onuma¹, Michiyo Honda^{2, 3}, Hideyuki Yoshimura^{2, 3}, Nobuyuki Kanzawa^{3, 4} and Mamoru Aizawa^{2, 3*}

¹Graduate School of Science and Technology, Meiji University, Kanagawa, Japan, ²School of Science and Technology, Meiji University, ³ International Institute for Materials with Life Functions, Meiji University, Kanagawa, Japan, ⁴ Faculty of Science and Technology, Sophia University, Tokyo, Japan * Email: mamorua@meiji.ac.jp

Introduction.

Hydroxyapatite $Ca_{10}(PO_4)_6(OH)_2$; HAp

1) M. Aizawa et al., Biomaterials, 26, 3427-3433 (2005). 2) Z. Zhuang et al., Mater. Sci. Eng. C, 33, 2534-2540 (2013).

Adsorption of Adsorption of proteins cells / proteins Final goals materials and cells. response of living bone. **I** In this study

Characterization of HAp ceramics.

Fabrication of Hydroxyapatite ceramics

Apatite gels; AG \Rightarrow Apatite fiber; AF

AG and AF (AG30%AF)

1) M. Aizawa et al., Biomaterials, 26, 3427-3433 (2005). 3) Z. Zhuang et al., Acta Biomaterialia, 9, 6732-6740 (2013). **<u>aHAp: preferred orientation to** *a***-plane</u>**

anisotropy of living bones and cellular responses.

