Antimicrobial Hernia Mesh:

Plasma Activated Diallyldimethylammonium Chloride Coating

Ziyu Wang\(^1\), Ahmed El-Shafei\(^1\), Ashley C. Brown\(^2\), Jessica M. Gluck\(^1\), Martin W. King\(^1,3\)

\(^1\) Wilson College of Textiles, North Carolina State University, Raleigh, NC

\(^2\) Joint Dept of Biomedical Engineering, UNC-Chapel Hill & NC State University, Raleigh, NC

\(^3\) College of Textiles, Donghua University, Songjiang, Shanghai, China

Background

More than 20,000 US hernia cases each year.

- Frequency of hernia mesh complications:
 - Inguinal repair ranges from 2.3% to 20%.
 - Femoral hernias range from 11.8% to 75%.

- Other hernia complications:
 - Seroma, persistent pain, tissue adhesions, and wound infection.
 - Infection is the third major complication after hernia mesh implantation [1].

Approach

Plasma induced antibacterial hernia mesh to prevent bacterial infection.

- Radio frequency plasma activates mesh surface with diallyldimethylammonium chloride (DADMAC) and pentaerythritol tetraacrylate (PETA) crosslinker [2].
- Prevents late bacterial infection.
- Inexpensive and easy method to apply.
- Tension-free mesh helps recovery and reduces recurrence.

Results

Water Contact Angle

<table>
<thead>
<tr>
<th>PP mesh control</th>
<th>DADMAC treated mesh</th>
</tr>
</thead>
</table>

Effect of Antibacterial Grafting

<table>
<thead>
<tr>
<th>Log value of E. coli number per ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP control</td>
</tr>
<tr>
<td>DADMAC treated mesh</td>
</tr>
</tbody>
</table>

Live/Dead Day 3

- 500 x 500 \(\mu \)m
- TOF-SIMS Analysis

- PP control (C\(_3\)H\(_6\)O\(_2\))
- DADMAC mesh (C\(_3\)H\(_6\)O\(_2\))
- DADMAC mesh (C\(_5\)H\(_4\)N\(_2\))

Conclusions and Future Work

- Successfully activated both sides of the polypropylene mesh surface by using He/O\(_2\) radio frequency plasma.
- Successfully grafted uniform coating of DADMAC on both sides of the polypropylene mesh.
- Nitrogen positive ions were detected on the DADMAC treated mesh surface by acid dye and TOF-SIMS to confirm the presence of DADMAC coating.
- The bacteriostatic rate for DADMAC treated mesh was calculated for both E. coli (at 86.8%) and for S. aureus (99.9%). The DADMAC treated samples indicated significant reduction in bacteria load compared to the untreated control sample.
- In the future, optimize power level and time for the atmospheric pressure radio frequency plasma system to improve the durability of DADMAC coating.
- *In vitro* assays to evaluate cell attachment and mesh biocompatibility will be undertaken.
- *In vivo* animal trials will demonstrate clinical relevance.

References

Contact Info

Ziyu Wang: zwang77@ncsu.edu
LinkedIn: Ziyu Wang